Сайт учителя математики Вовденко Ольги Леонидовны
Пятница, 26.04.2024, 05:27
Моя работа

Ученикам

Родителям

Это интересно

Педагогам
Школьно-Студенческая социальная Сеть! Конкурс образовательных сайтов. Сайты для учителей. Презентации для учителей по всем предметамМетодсовет КАРМАН для математика Учительский портал Банк Интернет-портфолио учителей Продленка Презентации PowerPoint

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Праздники
Праздники России

Друзья сайта
  • Департамент образования г. Липецка
  • Образовательный портал г. Липецка
  • Управление образования и науки Липецкой области
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе

  • Поиск

    Из истории математики

       ВВС: История математики.  Математика - универсальный язык Вселенной, фундамент, на котором основаны все другие науки. Как человечество смогло открыть тайны этого универсального языка? Начиная с древнейших времен, прослеживается история математики до наших дней и завершается рассказом о наиболее важных проблемах современности. За решение каждой из этих "проблем тысячелетия" полагается крупное денежное вознаграждение. Но главное, их решение позволит лучше понять устройство нашего мира. Ну и последнее. Если вы считаете, что математика не интересна - не торопитесь сбрасывать со счетов этот фильм. Рассказ ведется настолько захватывающе, что вам скучать не придется. У вас есть шанс познакомиться с математикой с другой, интересной стороны.




       Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом пальцы рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность. Дальнейшее развитие математики началось примерно в 3000 до н.э. благодаря вавилонянам и египтянам.

     Греческая математика

      Понятие древнегреческая математика охватывает достижения грекоязычных математиков, живших в период между VI веком до н. э. и V веком н. э. Вплоть до VI века до н. э. греческая математика ничем выдающимся не прославилась. Были, как обычно, освоены счёт и измерение. О достижениях ранних греческих математиков мы знаем в основном по комментариям позднейших авторов, преимущественно Евклида, Платона и Аристотеля.
       В VI веке до н. э. «греческое чудо» начинается: появляются сразу две научные школы: ионийцы (Фалес Милетский) и пифагорейцы (Пифагор).
        Фалес, богатый купец, во время торговых поездок, видимо, хорошо изучил вавилонскую математику и астрономию. Ионийцы дали первые доказательства геометрических теорем. Однако главная роль в деле создания античной математики принадлежит пифагорейцам.
       Пифагор, основатель школы, как и Фалес, много путешествовал и тоже учился у египетских и вавилонских мудрецов. Именно он выдвинул тезис «Числа правят миром», и занимался его обоснованием.  Пифагорейцы немало продвинулись в теории делимости, но чрезмерно увлеклись играми с «треугольными», «квадратными», «совершенными» и т. п. числами, которым, судя по всему, придавали мистическое значение. Теория наибольших общих делителей и наименьших общих кратных тоже, видимо, пифагорейского происхождения. Вероятно, они же построили общую теорию дробей (понимаемых как отношения (пропорции), так как единица считалась неделимой), научились выполнять с дробями сравнение (приведением к общему знаменателю) и все 4 арифметические операции.

    Именно пифагорейцам мы во многом обязаны той математикой, которая затем была систематизированно изложена и доказана в Началах Евклида. Есть основания полагать, что именно они открыли то, что ныне известно как теоремы о треугольниках, параллельных прямых, многоугольниках, окружностях, сферах и правильных многогранниках.
      Одним из самых выдающихся пифагорейцев был Платон (ок. 427-347 до н.э.). Платон был убежден, что физический мир постижим лишь посредством математики. Считается, что именно ему принадлежит заслуга изобретения аналитического метода доказательства. Заметное место в истории математики занимает Аристотель, ученик Платона. Аристотель заложил основы науки логики и высказал ряд идей относительно определений, аксиом, бесконечности и возможности геометрических построений.
      Около 300 до н.э. результаты многих греческих математиков были сведены в единое целое Евклидом, написавшим математический шедевр Начала. Из немногих проницательно отобранных аксиом Евклид вывел около 500 теорем, охвативших все наиболее важные результаты классического периода. Свое сочинение Евклид начал с определения таких терминов, как прямая, угол и окружность. Затем он сформулировал десять самоочевидных истин, таких, как «целое больше любой из частей». И из этих десяти аксиом Евклид смог вывести все теоремы. Для математиков текст Начал Евклида долгое время служил образцом строгости, пока в 19 в. не обнаружилось, что в нем имеются серьезные недостатки, такие как неосознанное использование несформулированных в явном виде допущений.



    Александрийский период
     В этот период, который начался около 300 до н.э., характер греческой математики изменился. Александрийская математика возникла в результате слияния классической греческой математики с математикой Вавилонии и Египта. В целом математики александрийского периода были больше склонны к решению чисто технических задач, чем к философии. Великие александрийские математики - Эратосфен, Архимед, Гиппарх, Птолемей, Диофант и Папп - продемонстрировали силу греческого гения в теоретическом абстрагировании, но столь же охотно применяли свой талант к решению практических проблем и чисто количественных задач. Эратосфен (ок. 275-194 до н.э.) нашел простой метод точного вычисления длины окружности Земли, ему же принадлежит календарь, в котором каждый четвертый год имеет на один день больше, чем другие. Астроном Аристарх (ок. 310-230 до н.э.) написал сочинение "О размерах и расстояниях Солнца и Луны", содержавшее одну из первых попыток определения этих размеров и расстояний; по своему характеру работа Аристарха была геометрической. Величайшим математиком древности был Архимед (ок. 287-212 до н.э.). Ему принадлежат формулировки многих теорем о площадях и объемах сложных фигур и тел, вполне строго доказанные им методом исчерпывания. Архимед был величайшим математическим физиком древности. Для доказательства теорем механики он использовал геометрические соображения. Его сочинение "О плавающих телах"  заложило основы гидростатики.
       В александрийский период арифметика и алгебра рассматривались независимо от геометрии. Высшим достижением александрийских математиков стало создание количественной астрономии. Гиппарху (ок. 161-126 до н.э.) мы обязаны изобретением тригонометрии. Его метод был основан на теореме, утверждающей, что в подобных треугольниках отношение длин любых двух сторон одного из них равно отношению длин двух соответственных сторон другого.
      Греческая тригонометрия и ее приложения в астрономии достигли пика своего развития в "Альмагесте" египтянина Клавдия Птолемея (умер в 168 н.э.). В "Альмагесте" была представлена теория движения небесных тел, господствовавшая вплоть до 16 в., когда ее сменила теория Коперника. Теория Коперника одержала верх именно потому, что как модель она оказалась проще.

    Математика на Востоке
       Ал-Хорезми или Мухаммад ибн Муса Хорезми (ок. 783 - ок. 850) - великий персидский математик, астроном и географ, основатель классической алгебры. Ал-Хорезми известен прежде всего своей «Книгой о восполнении и противопоставлении» («Ал-китаб ал мухтасар фи хисаб ал-джабр ва-л-мукабала»), от названия которой произошло слово «алгебра».
       В теоретической части своего трактата ал-Хорезми даёт классификацию уравнений 1-й и 2-й степени. Охарактеризовав каждый вид уравнений и показав на примерах правила их решения, ал-Хорезми даёт геометрическое доказательство этих правил для трёх последних видов, когда решение не сводится к простому извлечению корня. Для приведения квадратного уравнения общего вида к одному из шести канонических видов ал-Хорезми вводит два действия. Первое из них, ал-джабр, состоит в перенесении отрицательного члена из одной части в другую для получения в обеих частях положительных членов. Второе действие - ал-мукабала - состоит в приведении подобных членов в обеих частях уравнения. Кроме того, ал-Хорезми вводит правило умножения многочленов.

    Математика в древней Руси
       Предки русского народа – славяне – с незапамятных времен жили на землях Средней и Восточной Европы. Первые письменные упоминания о славянах встречаются в книгах древних римлян, написанных в самом начале нашей эры. Арабские книги говорят о том, что в середине первого тысячелетия славяне вели большую торговлю с греками, арабами и другими народами и храбро воевали с иноземцами, которые пытались их покорить. В Х веке нашей эры у славян появилась письменность. С этого времени начинается "писаная” история Древней Руси.
       У славян, как и у всех других ...

    Средние века и Возрождение
      Цивилизация, сложившаяся в Европе раннего Средневековья (ок. 400-1100), не была продуктивной, т.к. интеллектуальная жизнь сосредоточилась почти исключительно на теологии и загробной жизни. Уровень математического знания не поднимался выше арифметики и простых разделов из Начал Евклида. Наиболее важным разделом математики в Средние века считалась астрология; астрологов называли математиками. А поскольку медицинская практика основывалась преимущественно на астрологических показаниях или противопоказаниях, медикам не оставалось ничего другого, как стать математиками.
      Около 1100 г. в западноевропейской математике начался почти трехвековой период освоения сохраненного арабами и византийскими греками наследия Древнего мира и Востока. Поскольку арабы владели почти всеми трудами древних греков, Европа получила обширную математическую литературу. Перевод этих трудов на латынь способствовал подъему математических исследований. Все великие ученые того времени признавали, что черпали вдохновение в трудах греков. Первым заслуживающим упоминания европейским математиком стал Леонардо Пизанский (Фибоначчи). В своем сочинении "Книга абака" (1202) он познакомил европейцев с индо-арабскими цифрами и методами вычислений, а также с арабской алгеброй. В течение следующих нескольких веков математическая активность в Европе ослабла.
      Среди лучших геометров эпохи Возрождения были художники, развившие идею перспективы, которая требовала геометрии со сходящимися параллельными прямыми. Художник Леон Баттиста Альберти (1404-1472) ввел понятия проекции и сечения. Понятия проекции и сечения порождали чисто математические вопросы. Например, какими общими геометрическими свойствами обладают сечение и исходная сцена, каковы свойства двух различных сечений одной и той же проекции, образованных двумя различными плоскостями, пересекающими проекцию под различными углами? Из таких вопросов и возникла проективная геометрия. Ее основатель - Ж.Дезарг (1593-1662) с помощью доказательств, основанных на проекции и сечении, унифицировал подход к различным типам конических сечений, которые великий греческий геометр Аполлоний рассматривал отдельно.

    Начало современной математики
      Наступление 16 в. в Западной Европе ознаменовалось важными достижениями в алгебре и арифметике. Были введены в обращение десятичные дроби и правила арифметических действий с ними. Настоящим триумфом стало изобретение в 1614 г. логарифмов Дж. Непером. К концу 17 в. окончательно сложилось понимание логарифмов как показателей степени с любым положительным числом, отличным от единицы, в качестве основания. С начала 16 в. более широко стали употребляться иррациональные числа. В 16 в. продолжались споры по поводу законности введения отрицательных чисел. В 16 в. итальянские математики Н.Тарталья (1499-1577), С.Даль Ферро (1465-1526), Л.Феррари (1522-1565) и Д.Кардано (1501-1576) нашли общие решения уравнений третьей и четвертой степеней. Чтобы сделать алгебраические рассуждения и их запись более точными, было введено множество символов, в том числе +, -, ?, , =, > и <. Самым существенным новшеством стало систематическое использование французским математиком Ф.Виетом (1540-1603) букв для обозначения неизвестных и постоянных величин. Это нововведение позволило ему найти единый метод решения уравнений второй, третьей и четвертой степеней. Затем математики обратились к уравнениям, степени которых выше четвертой.  В 1799 К.Фридрих Гаусс (1777-1855) доказал т.н. основную теорему алгебры: каждый многочлен n-й степени имеет ровно n корней.

    Современная математика
      Создание дифференциального и интегрального исчислений ознаменовало начало «высшей математики». Методы математического анализа, в отличие от понятия предела, лежащего в его основе, выглядели ясными и понятными. Многие годы математики, в том числе Ньютон и Лейбниц, тщетно пытались дать точное определение понятию предела. И все же, несмотря на многочисленные сомнения в обоснованности математического анализа, он находил все более широкое применение. Дифференциальное и интегральное исчисления стали краеугольными камнями математического анализа, который со временем включил в себя и такие предметы, как теория дифференциальных уравнений, обыкновенных и с частными производными, бесконечные ряды, вариационное исчисление, дифференциальная геометрия и многое другое. Строгое определение предела удалось получить лишь в 19 в.

       Неевклидова геометрия. К 1800 математика покоилась на двух «китах» - на числовой системе и евклидовой геометрии. Так как многие свойства числовой системы доказывались геометрически, евклидова геометрия была наиболее надежной частью здания математики. Тем не менее аксиома о параллельных содержала утверждение о прямых, простирающихся в бесконечность, которое не могло быть подтверждено опытом. Даже версия этой аксиомы, принадлежащая самому Евклиду, вовсе не утверждает, что какие-то прямые не пересекутся. В ней скорее формулируется условие, при котором они пересекутся в некоторой конечной точке. Столетиями математики пытались найти аксиоме о параллельных соответствующую подходящую замену. Но в каждом варианте непременно оказывался какой-нибудь пробел. Честь создания неевклидовой геометрии выпала Н.И.Лобачевскому (1792-1856) и Я.Бойяи (1802-1860), каждый из которых независимо опубликовал свое собственное оригинальное изложение неевклидовой геометрии. В их геометриях через данную точку можно было провести бесконечно много параллельных прямых. В геометрии Б.Римана (1826-1866) через точку вне прямой нельзя провести ни одной параллельной. О физических приложениях неевклидовой геометрии никто серьезно не помышлял. Создание А.Эйнштейном (1879-1955) общей теории относительности в 1915 пробудило научный мир к осознанию реальности неевклидовой геометрии. Неевклидова геометрия стала наиболее впечатляющим интеллектуальным свершением 19 в. Она ясно продемонстрировала, что математику нельзя более рассматривать как свод непререкаемых истин. В лучшем случае математика может гарантировать достоверность доказательства на основе недостоверных аксиом. Но зато математики впредь обрели свободу исследовать любые идеи, которые могли показаться им привлекательными. Каждый математик в отдельности был теперь волен вводить свои собственные новые понятия и устанавливать аксиомы по своему усмотрению, следя лишь за тем, чтобы проистекающие из аксиом теоремы не противоречили друг другу. Грандиозное расширение круга математических исследований в конце прошлого века по существу явилось следствием этой новой свободы.